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New Procedure for Optimal Design of Sequential Experiments in

Kinetic Models

Vincenzo G. Dovi,” Andrea P. Reverberi, and Leonardo Acevedo-Duarte’
ISTIC—Universita di Genova, Via Opera Pia, 15, 16145 Genova, Italy

The high correlation between preexponential factors and activation energies is a severe drawback
in the estimation of kinetic parameters. This difficulty is generally overcome using two different
techniques, i.e., reparametrization and parameter separation. It has been demonstrated that in
sequential experimental design the former technique can only occasionally lead to better numerical
results, with no theoretical advantage over the non-reparametrized model. In this work we show
that the separability property can be a convenient tool also for the optimization of experiment
planning. A numerical example is considered, and both cases of constant absolute and relative

errors are examined.

Introduction

Kinetic rate models can be written as

r = £(X,0) (1

where r is the vector of measured rates, X is the vector of
the operating variables, and 6 are the unknown parameters.

Typically the kinetic rate models can be cast into the
form

ri = Zkije_Eij/RTfij(cla)
J

where k;;indicate preexponential factors and E;;activation
energies. f; are suitable functions of concentrations c,
and the parameters « are related to the orders of the
reactions.

Thus the kinetics of a single irreversible reaction is
described by

r= ke‘E/RTcl"‘cz‘s... 2)
The high correlation between preexponential factors and
activation energies makes it difficult to estimate kinetic
parameters accurately.

The influence of this correlation on convergence in the
iterative estimation of the parameters 6 can be successfully
reduced if the reparametrization suggested by Box (1965)
is introduced, namely,

Ky = ke Bl kT 3)
r =k exp [—%(—;—, - %)] e ef... (4)

where T* is a reference temperature.

Since k’ and E turn out to be much less correlated than
the original parameters k and E, the estimation procedure
is considerably easier.

Another strategy based on the method of separation of
variables (Lawton and Sylvestre, 1971; Golub and Pereyra,
1976) makes it possible to carry out the whole estimation
procedure in terms of the parameters E, «, and 8 (which
in the sequel will be referred to as nonlinear parameters,
due to the fact that they enter relation 2 nonlinearly),
with k being evaluated, in the case of a single irreversible
reaction, by the relation of conditional optimality given
by the expression
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k=H'E,aBr 6))

where r is the vector {r;} and H* is the pseudoinverse of
the vector

h; = eFBTe 2c)f... ()]

the general definition of the pseudoinverse of an m X n
matrix A of rank r being given by

where R is a nonsingular r X r matrix and K and H are
two orthogonal matrices given by the (mot uniquely
defined) orthogonal decomposition of A

A = HRK"

Another approach, based on normal equations and direct
substitution, has been recently proposed by Chen and Aris
(1992) for a simple case.

A typical Gauss—Newton step of the regression procedure
based on least squares is provided by

0(n+1) = 0(") — (DHlp)+HJ'p N

where 0 is the vector {E,a,8}, p are the residuals (exper-
imental values minus computed values of the reaction
rates), H+ is defined as (1 - HtH), and DH- is the Frechet
derivative of the matrix H- (Golub, 1976), defined as

F.) Hj (o(n))

o0
At convergence, the standard deviations of {E,a,8} can be
estimated employing the usual approximation based on

the Hessian matrix of the likelihood function, whereas
the variance of k can be evaluated using the general relation

DH* (™) =

oH?*
ok
st om* om\[ VEE Ve Vi SH*
Vk =( ) VaE Vaa VaB Y (8)
3E sa B /N\yE v dex
Eg af 68 a;r
aB

The aim of optimal design of sequential experiments is to
determine values of the independent variables T, ¢, ¢s, ...
at which to take the new experiment(s), so that a suitable
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norm of the expected variance—covariance matrix of the
parameters after the new experiments is least.

If random errors are normally distributed with constant
variance o2, the variance—covariance matrix can be ap-
proximated by

V = (FTF)"¢? 9
where F;; = (8f/80;)(X;,0,) (Bard, 1974).
A frequently used norm is the volume of the confidence

region, whose linear approximation with respect to ¢ is
given by (Agarwal and Brisk, 1985)

@-0TETF0-0) =

where 8 is the current vector of parameters and ¢ is a
constant depending on the number of degrees of freedom,
the selected probability level, and the error variance.

Infactit can be shown that the volume of the confidence
region is inversely proportional to the determinant of V
(Box and Lucas, 1959).

It has been demonstrated by Rimensberger and Rippin
(1986) that the introduction of a reparametrization does
not change the sequence of optimal settings for the
independent variables, even if minor numerical improve-
ments are produced, as reported by Agarwal and Brisk
(1985).

In fact the confidence region volume is proportional to

|G| |(FTRy!/
where G is the transformation matrix

ok, ok,
Ok, Ok,
G=|dk, oK,
Ok, Ok,

Since the elements of G do not depend on the inde-
pendent variables T, ¢, and cg, there is no difference in
minimizing |(FTF)}1/2 or |G| |(FTF)|-1/2 with respect to the
independent variables for the determination of optimal
settings.

On the other hand transformation (eqs 5 and 6) does
depend on the independent variables T, ¢y, and ca;.

This means that differences are to be expected between
the transformation approach and the separation of vari-
ables approach in the general optimization strategy. In
particular the latter approach will be shown to be more
amenable to a numerical solution due to a simplified
analytical form.

Design Procedures Using Separable Models

The example reported by Agarwal and Brisk (1985) is
used to illustrate the method. It can be generalized to
multivariate reversible models along the guidelines dis-
cussed in Dovi et al. (1987).

The kinetic model is given by

r=g=k¢(E,afTx,x,) = ke -E/RTp p

with the limitations

P1imin = P1 = Pmax

p2,min = P2 = p2,max
Toin ST = Tpp

min =

The assumption of constant pressure (made by Agarwal
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and Brisk) has been dropped, so that the introduction of
a third inert component could be avoided.

The kineticrates r;can be considered subject to normally
distributed random errors with variance o2 given by

ol=ar

which is the common way of representing heteroscedas-
ticity of data (Reilly et al., 1977). Suppose the estimates
k, E, a, and B8 have been obtained after the first N
experiments and let V, be the variance—covariance matrix
of the estimates of the nonlinear parameters E, o, and 8
obtained using the minimization method, whose general
iteration is given by relation 7.

Letus suppose further that the criterion used for optimal
design is given by the minimization of the determinant of
the expected variance-covariance matrix V obtained after
the new experiment.

In this case we have (Bard, 1974)

‘~7_ B B
(o2

where B is the vector (Dg/DE, Dg/Dea, Dg/Dg) computed
at the new setting. Dg/DE, Dg/Da, Dg/DB indicate total
derivatives of g, i.e., they take into account changes in &,
according to relation 5, as the parameters E, o, and 8 vary.

We shall examine first the case {b = 2} which corresponds
to constant relative errors. Relation 10 can be written as

'1] = max 10

8.8 &8
Aoy, e, Sy,
o ag
818 1 &5 gzgs _
818 828
=2 Vil _:"' Vo g_32+ Vo'ss
Lagz ag ag o
where
ok k
§1=3E® "RTP T8¢
ok
) =5;¢ + ko Inp, = &0
&3 35¢+ k¢ Inp, = £50
g=k¢
Setting
ak2V,,ij‘1 =u;
we obtain
det[ElE] + uij] = max (11)

Due to the one-to-one correspondence between &, — T, &;
— p1, and £3 — po, the optimization can be carried out in
terms of the £ after suitable modifications of the con-
straints.

On the other hand simple algebraic manipulations
change problem 11 into

¥ = 512("‘22”33 - u232) + 522(”11’-‘33 - uxaz) + 532("‘22”11 -
u122) + 28,85 (Uyglgy — Uygligg) + 28,55 glgg — Uggliyy) +
2Ea85(uqgliyg — Uyylpy) = max (12)

Stationary points of this expression can be determined
solving a 3 X 3 system of linear equations. However, since
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Table 1. Flow Chart of the Algorithm for Optimal
Settings Computation

1.Setk=1

2.8eta=0

3. Set & = £
4. Compute

Uy,
i =~ &
/ Upp

5.1f £jmin < & < £ max

Compute the objective function at £7,¢;

and goto 12
6. Ifk=1thensetm =2elseif k =2thenset m = 3elsesetm=1
7.8etb=0

8

. ®) ~ @ _
_ b (Uiplmp = Uimlge) t £ (Uimlmp — Ummbin)
Ei#k,m -

9.If £min < & < &jmax
Compute the objective function at
(@) £(b)
Ek !Em i
and goto 11

10. Compute the objective function at

£@ £ £O
m 51
Compute the objective function at

6k ki
11.If b =0 thenset b = 1 and goto 8
12.If a = 0 then set a = 1 and goto 3
13.Set k = k + 1. If k > 3 then stop
14, Goto 2

2
Uk = Ummbek

there are nolinear terms in ¢, the solution cannot be located
oninterior point of the feasible domain. Thus the solution
of this maximization problem can be obtained by com-
binatorially setting some of the §; to their upper (lower)
limits and solving a simplified system of linear equations
with respect to the remaining variables.

The overall combinatorial scheme and the corresponding
optimal values of ¢; are illustrated in Table 1, where the
notation £ = £ pin £ = £ may has been used.

On the other hand the strong correlation reduction
between nonlinear parameters after the separation pro-
cedure can be taken advantage of. In fact if off diagonal
elements of V, can be neglected, V4! will also be nearly
diagonal. Thus if

Wi ~ U;id;;

the maximization problem reduces to

q12(% - R’%)Z + qf(%— +kIn p1)2 + qﬁ(% +kIn p2)2 =
max
where )
01" = Upyy
q5" = ugligg
Q32 = Uil

This problem can be easily solved by separate optimization
of

Ok _ k
OE R
(G.e., T = Tpex or T = Ty, according to the current
magnitudes of & and 0k/dE and the sign of dk/dE) and

k
%+klnp1
k+klnp = max
Gl

= max

= max

Table 2. Initial Experimental Conditions

expt no. T, °C D1 P2

1 45.0 0.35 0.65

2 53.0 0.30 0.70

3 60.0 0.28 0.72

4 68.0 0.38 0.45

5 75.0 0.25 0.55

6 85.0 0.15 0.60

Table 3. Initial Estimates#
10% noise 40% noise
A& B this work A &B° this work

k(10°®) >20 7.11 >20 6.94
E, kcal/mol 12.450% 14.761 >15 14.221

s True values: k = 4.62, E = 11.6. ® Reported value is inferred
from graph. ¢ Agarwal and Brisk (1985).

Table 4. Estimates of Reaction Orders

true value after 6 expts after 15 expts
o 0.33 0.35 % 0.02 0.34 £ 0.005
8 1 0.996 @ 0.04 0.999 @ 0.018
subject to

pl,min = pl < pl,max

p2,min < p2 = p2,max

In order to estimate the degree of accuracy of the
approximation described, let us neglect the quadratic terms
in the off-diagonal variables u;; contained in relation 12
(infact if the correlation coefficients w;;/ (u;ju;;)1/2 are large,
the approximation could not be used anyway). We obtain

— g2 2 2 ,
U = £ Uggligy + £ UyUsy + £3"Ugolyy — 26,5l 9lgs —
25 55U glgg — 2658 5Ugguy,

and consequently

¢ © ©¢ © ©¢ ©
AV 1 by Uplgzt§y 6y Usglgg + &y 6y Usgly
~ 4

¥ 2 02 0)2
0 £ Uggligy t &y Upyligy + £y Uggligg

where the symbols £©, £©, £ 3@, and ¥, refer to the
approximate solution and A¥ is the change of the objective
function brought about by nonzero values of 2, 413, and
ugs. Thus for any predetermined value of the ratio A¥/
¥y, it is possible to decide if the approximation described
can be employed.

Let us consider now the case of constant absolute error.
We have to maximize

T
det| BB + v, 1| = Ldet v,[c + BV,BT
a [} a [}

which corresponds to the maximization of

exP(Z'YiEi)Zfiijoij = max (13)
]
where
_2E _ 2a _28
"= i Yo = ‘E‘ Y3 = ?

subject to suitable bounds on the £&. Stationary points of
this problem are given by



ie.,

Z Vonki

v +———=0 (14)
ZVoijEiEj
i
" ZVoizfi =7, vaii (15)
Y1 ZVoiafi =1 ZVonEi (16)

Relations 15 and 16 make it possible to express {; and &;
as linear functions of £5. Substituting in 14 gives an
equation in the single variable £&5. Thus by scanning a
suitable range of &3, we can locate all the stationary points
of {£1,£2,£38. This makes it possible to locate stationary
points inside the feasible domain.

In this case too, maxima on the domain boundary can
be determined by combinatorially setting some of the §;
to their upper (lower) limits and repeating the procedure
described above for the remaining variables.

Values of the heteroscedasticity parameter b other than
0 or 2 generally lead to objective functions more difficult
to optimize due to the nonstraightforward determination
of all unconstrained maxima. However, knowing optimum
settings for the cases b = 0 and b = 2 can provide guidance
concerning the optimum values for intermediate cases.

Thus a general outline of the method has been com-
pletely described.

Benefits Resulting from the Use of Separable
Models in the Design Procedure

Any procedure for the design of sequential experiments
consists of two steps: (1) Estimation of parameters by
means of regression calculations using the experimental
data available. (2) Determination of optimum variable
settings for the next experiment(s).

If parameters are highly correlated, the first step is
generally difficult and can be dealt with only using special
techniques, such as reparametrization and separation of
variables, the latter technique possessing the additional
advantage of reducing the number of independent pa-
rameters.

The second step is a difficult task, because it implies a
nonconvex, nonlinear maximization. Itisgenerally tackled
by setting up agrid over the permitted experimental region,
each point of the grid being used as a starting point for
alocal convex maximization. By reducing the dimensions
of the grid meshes (i.e., increasing the number of grid
points), we can be confident that the global maximum has
beenlocated. However, if the number of variables exceeds
2, this procedure can be computationally prohibitive, even
if the selected grid is comparatively coarse. Thus a
frequent compromise is to limit the selection of new
experimental settings to the points of the grid, at each of
which the objective function is evaluated (Rimensberger
and Rippin, 1986).

As has been pointed out in the introduction, the use of
reparametrization does not alleviate this difficulty, whereas

Ind. Eng. Chem. Res., Vol. 33, No. 1, 1994 65

Table 5. Correlation Factors between Parameters (40%
Noise)

Reparametrized Model
In ®’ In(E/R) o B
1 0.9699 0.9874 0.9574
1 0.9700 0.9251
1 0.9035
1
Separated Model
E a 8
1 0.0668 0.0437
1 0.0201

1

the method of separation of parameters leads, as dem-
onstrated in the previous paragraph, to a simple combi-
natorial algorithm, capable of locating the global minimum
with a modest number of evaluations of the objective
function.

Thus the benefit resulting from the use of separable
models is two-fold: (a) After each experiment the infor-
mation available is used effectively for the estimation of
parameters. This can prevent additional unnecessary
experiments. (b) Globally optimum settings are deter-
mined after each regression step, so that each new
experiment provides the largest amount of information.

Traditional techniques are less likely to determine the
same sequence of parameters and settings, due to the
numerical difficulties described above. This can lead to
a greater number of experiments than necessary.

A Numerical Example

To test the validity of the procedure described we have
simulated an experimental campaign, using the model and
the initial six experimental data points proposed by
Agarwal and Brisk (1985), and report the results in Table
2. Although partial pressures instead of molar fractions
were used, we were able to use the same numerical values
with partial pressure being expressed in atmospheres and
the preexponential factor possessing suitable dimensions.

To reproduce the test we added random 10% and 40%
relative and absolute errors to the exact data in the initial
set, as well as in the rate data obtained by simulating the
reaction at the optimum settings determined. Theresults
obtained are reported for the four cases, but a comparison
with those provided by Brisk and Agarwal is possible only
for the two constant relative error cases.

In both the low (10%) and high (40%) noise level cases
the initial estimates of E, «, and @ were different from
those proposed by Agarwal and Brisk (1985), with a lower
objective function than that obtained using their proposed
values, which were the starting values used in our
minimization procedure (see Table 3). In other words
separation of parameters determines the global minimum,
whereas the non-reparametrized model as well as the
reparametrized model locates a local optimum, which
seems to coincide with the results obtained by Rimens-
berger and Rippin (1986).

The values of a and 8 are estimated very precisely and
accurately even using only the first 6 data points, as
compared with a 38.9% deviation after 15 experiments if
the reparametrized model is used (see Table 4).

Similarly the initial correlation coefficients between the
nonlinear parameters are considerably lower than those
between parameters in reparametrized and non-reparam-
etrized models (see Table 5).
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Table 6. Numerical Results Using 6 Initial Data Points

exp. noise, exp. noise,
noo. T pl p2 %  error k E,kcal/mol no. T pl p2 %  error k E, kcal/mol

7 90.00 0.10 040 10 r 17.3793+£48% 14.1493%6.7% 19 90.00 0.10 040 10 r 64736+24% 12.6402£2.7%
90.00 0.10 0.40 10 a 6.3857+45% 13.1487x53% 90.00 0.10 040 10 a 6.7835+24% 1271713+ 2.6%
90.00 0.10 0.40 40 r 68146x178% 14.0882%+8.1% 90.00 0.10 0.40 40 r 68730+£86% 12.8706%+5.1%
90.00 0.10 040 40 a 81923%£17.8% 14.0013%£84% 90.00 0.10 0.40 40 a 74806x£9.5% 13.9817+4.6%

8 90.00 0.10 040 10 r b5.7554+46% 14.2070%£5.0% 20 90.00 0.10 0.40 10 r 6.6672x22% 121975+ 2.8%
90.00 0.10 040 10 a 6.0690+43% 14.0010x4.6% 90.00 0.10 040 10 a 7.0439%23% 12.5932%2.8%
90.00 0.10 0.40 40 r 82645£16.2% 14.1571%+81% 90.00 0.10 0.40 40 r 7.5762x7.0% 12.7698 %+ 4.7%
90.00 0.10 0.40 40 a 8.6476x16.4% 13.7504 £9.9% 90.00 0.10 0.40 40 a 7.3631%+82% 134715%+4.3%

9 90.00 0.10 040 10 r 56703+4.0% 13.2016%£51% 21 90.00 0.10 040 10 r 5.8763x24% 12.1189%2.5%
90.00 0.10 040 10 a 64919+£34% 14.2210%+4.2% 90.00 0.10 0.40 10 a 61464%£26% 12.6519%2.2%
90.00 0.10 0.40 40 r 8.2350+15.3% 12.8951x8.3% 90.00 0.10 0.40 40 r  7.2753x9.2% 127148+ 4.5%
90.00 0.10 0.40 40 a 8.5271x15.0% 13.5405+17.7% 90.00 0.10 0.40 40 a 7.6239%92% 13.4131+4.6%

10 90.00 0.10 0.40 10 r 17.2244+36% 129801+4.2% 22 90.00 0.10 040 10 r 6.3845+19% 12.2481%2.7%
90.00 0.10 040 10 a 7.0176+3.6% 13.0045x5.5% 90.00 0.10 040 10 a 6.4271+23% 12.7917+2.8%
90.00 0.10 0.40 40 r 7.6111+16.3% 12.1175x7.8% 90.00 0.10 0.40 40 r 7.3390x£86% 127220+ 4.4%
90.00 0.10 0.40 40 a T7.7154+12.7% 11.2634+6.7% 90.00 0.10 0.40 40 a 175471x73% 13.5179x4.1%

11 90.00 0.10 0.40 10 r 7.4525+32% 12.8944%x49% 23 90.00 0.10 040 10 r 6.2354x1.8% 12.75639+2.4%
90.00 0.10 0.40 10 a 7.0266+37% 12.8093+4.4% 90.00 0.10 040 10 a 63994x£19% 128111+24%
90.00 0.10 0.40 40 r 77789 £153% 12.5193%8.1% 90.00 0.10 0.40 40 r 7.4435x89% 12.9742%4.1%
90.00 0.10 040 40 a 8.0838+14.5% 12.0879%6.8% 90.00 0.10 0.40 40 a 85527x9.1% 13.3577%x44%

12 90.00 0.10 040 10 r 7.2246+34% 126077%£4.3% 24 90.00 0.10 040 10 r 63744 2.0% 12.5300x2.5%
90.00 0.10 040 10 a 6.1849+3.2% 129571+39% 90.00 0.10 0.40 10 a 6.6717x21% 12.9010+2.6%
90.00 0.10 0.40 40 r 7.4473+11.2% 122593+ 17.1% 90.00 0.10 0.40 40 r 7.2331x69% 12.99244.2%
90.00 0.10 040 40 a 81651%£11.7% 12.7508 +6.9% 90.00 0.10 0.40 40 a 84758x6.8% 13.5141x44%

13 90.00 0.10 040 10 r 63364+3.0% 12.6801x32% 25 90.00 0.10 0.40 10 r 63000x1.6% 12.2951+2.3%
90.00 0.10 040 10 a 68146+£3.0% 12.8299+3.6% 90.00 0.10 040 10 a 61959x21% 12.7614x2.0%
90.00 0.10 040 40 r 7.8334x11.1% 12.4236x7.3% 90.00 0.10 0.40 40 r 7.4810£76% 12.8628 % 3.5%
90.00 0.10 0.80 40 a 85007x13.1% 13.0416x6.1% 90.00 0.10 0.80 40 a 17.5665x6.9% 13.7333x4.3%

14 90.00 0.10 0.40 10 r 61205+3.2% 12.5949+3.2% 26 90.00 0.40 040 10 r 6.1648x19% 12.5931+2.4%
90.00 0.10 0.40 10 a 6.5490+35% 127048+ 3.6% 90.00 0.40 040 10 a 6.8021%+18% 12.5190%24%
90.00 0.40 040 40 r 7.2939x114% 12.7201%£6.2% n 90.00 040 040 40 r 81525+7.3% 12.8610*3.7%
90.00 0.40 0.80 40 a 8.2402+12.4% 13.0333x£6.0% 90.00 0.10 0.80 40 a 82598%77% 13.6185x3.5%

15 90.00 0.10 040 10 r 6.4804%+3.1% 12.2319+£3.7% 27 90.00 0.10 0.40 10 r b57563%x21% 12.1926+2.3%
90.00 0.10 040 10 a 6.1026x23% 12.3933+3.6% 90.00 0.10 0.40 10 a 6.8933+2.0% 12.6593%2.5%
90.00 0.40 0.40 40 r 177050 11.1% 12.5215£5.7% 90.00 0.10 0.40 40 a 81166x£6.2% 12.6733+4.0%
90.00 0.40 0.40 40 a 7.6865+10.8% 13.2483+6.0% 90.00 0.10 0.80 40 a 7.3416%£7.4% 13.3722%£3.1%

16 90.00 0.40 040 10 r 5.9528+22% 12.1901+3.3% 28 90.00 0.10 0.80 10 r 62148+19% 121875+ 2.3%
90.00 0.40 040 10 a 6.7050+3.2% 12.6590x3.3% 90.00 0.10 0.80 10 a 62146+£1.8% 12.6587%2.5%
90.00 0.40 0.40 40 r 81591%£11.9% 129257+ 5.7% 90.00 0.10 0.40 40 r 7.4385+£6.0% 12.9959%3.2%
90.00 0.40 0.40 40 a 85018%£10.6% 13.6281%+5.5% 90.00 0.10 0.80 40 a 7.9737£6.3% 13.5081£3.2%

17 90.00 0.40 0.40 10 r 58084+23% 121677+28% 29 90.00 0.10 0.80 10 r 7.0531x1.7% 12.2964%2.0%
90.00 0.40 0.40 10 a 7.0296x27% 12.6568+ 3.8% 90.00 0.10 0.80 10 a 6.6296x1.6% 12.76556+2.3%
90.00 0.40 0.40 40 r 7.4676x10.0% 12.9263x5.5% 90.00 0.10 0.80 40 r 17.5459+7.4% 12.9093+3.3%
90.00 0.40 0.40 40 a 84217x12.1% 13.4823x4.8% 90.00 0.10 0.80 40 a 85293%£5.7% 13.3011£3.4%

18 90.00 0.40 040 10 r 6.1095%x25% 12.3282x2.8% 30 90.00 0.10 0.80 10 r T7.1231%£16% 12.5632£2.1%
90.00 0.40 0.40 10 a 69795x24% 124901x3.1% 90.00 0.10 0.80 10 a 6.7217x1.8% 12.6147%£2.0%
90.00 0.40 0.40 40 r 77974 11.7% 129902 £ 4.6% 90.00 0.10 0.80 40 r 7.6924x7.0% 12.8876=%3.3%
90.00 0.40 0.40 40 a 81113+96% 13.5519%5.0% 90.00 0.10 0.80 40 a 17.3804x+6.8% 13.3631+3.6%

As for the two parameters k and E, it was not possible
to carry out a complete comparison, because the very
starting values were different.

After the initial estimate the sequence of optimal
alternate experimental settings determination and re-
gression calculations was carried out using the methods
described in this paper (i.e., the algorithms defined in Table
1 or by eqs 14-16 for settings determination and the
algorithm defined by eq 7 for the estimation of parameters
after each new experiment).

The results obtained from this procedure (optimum
settings, parameter estimates, and standard deviations of
parameters after each additional experiment) are shown
inTable 6. They can be summarized as follows: (a) There
is hardly any influence of noise level and type of error on
optimum settings, and their influence on the estimates
obtained after each new experiment is not very strong
either, if compared with the results reported by Agarwal
and Brisk (1985), which seems to indicate a damping

influence of the separation of parameters on the accuracy
of the estimates. (b) In no case did the optimal estimates
of k and E tend to the true values. (c) The same (upper)
value of temperature was called for at each stage, with 12
experiments out of 24 being exactly the same.

This anomalous behavior was attributed to an insuf-
ficient number of initial data points (six data points for
four parameters). In fact relation 10, computed at the
current values of the parameters, is valid only if the latter
are sufficiently close to the true values. Otherwisestrongly
biased estimates may call for the same experiment many
times sequentially. On the other hand the same exper-
imental settings may fail to provide enough information
for bias correction and eventually this can lead to wrong
asymptotic estimates. Totestthis possibility, we increased
the number of initial data points to 12 and repeated the
same procedure increasing the number of sequential
experiments correspondingly. The results are reported
in Table 7.
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exp. noise, exp. noise,
noo. T pl p2 % error k E,kcal/mol no. T pl p2 % error k E, kcal/mol
13 90.00 0.10 0.40 10 r 6.6414+38% 12.0097+4.5% 25 90.00 0.40 0.40 10 r b53594%£19% 11.5568=+2.5%
90.00 0.10 0.40 10 a 7.2010%36% 11.4204%4.4% 4470 0.39 040 10 a 4.5016+22% 11.7075+2.9%
90.00 0.10 0.40 40 r 6.3393+13.9% 11.2631+7.6% 40.00 0.40 0.40 40 r 28932+85% 11.6938%+3.8%
90.00 0.10 0.40 40 a 7.2857x16.3% 12.0488%5.9% 90.00 0.40 0.80 40 a 53449+ 7.9% 12.0859 +3.8%
14 90.00 0.10 040 10 r 56694%x32% 11.1977+4.0% 26 90.00 0.10 0.80 10 r 42376+1.7% 11.6536% 2.2%
90.00 0.10 0.40 10 a b57731+£3.6% 11.0302%+4.6% 40.00 0.33 0.40 10 a 51395x195% 11.4719+£24%
90.00 0.10 0.40 40 r 5.3425x14.5% 11.2962*8.4% 40.00 0.10 0.40 40 r 5.5224%+80% 11.8052%3.56%
90.00 0.10 0.40 40 a 6.1111+14.5% 123135+ 7.4% 90.00 0.40 0.63 40 a 3.2003+7.0% 12.2091+44%
15 90.00 0.10 040 10 r 52727+£34% 11.1552x4.1% 27 90.00 0.10 0.80 10 r 4.8092+2.0% 11.4582%x19%
90.00 0.10 0.40 10 a 41367x31% 11.6192+3.5% 40.00 0.40 0.40 10 a 5.3686x20% 12.0431x25%
90.00 0.10 0.40 40 r 29161%£109% 11.6445%7.2% 40.00 0.10 0.40 40 r 59159x79% 11.7441%4.4%
90.00 0.10 0.40 40 a 36844%136% 12.0207+6.7% 90.00 0.40 0.40 40 a 49733x7.8% 12.2214%+3.6%
16 90.00 0.10 040 10 r 3.7429+27% 11.9322+3.6% 28 90.00 0.10 0.80 10 r 4.8503x20% 11.5123x1.9%
81.70 0.10 0.40 10 a 52651+33% 11.82562+3.3% 50.40 0.31 0.40 10 a 39994x17% 120790%2.1%
90.00 0.10 0.40 40 r b50146£13.6% 11.7713%+59% 40.00 0.10 0.40 40 r 3.6423+£6.2% 11.8198x4.1%
58.30 0.10 0.40 40 a 5.5862x128% 11.7617%6.7% 90.00 0.40 0.40 40 a 51986x7.3% 11.9262x3.7%
17 90.00 0.10 0.40 10 r 38124%£32% 12.0462%x3.7% 29 90.00 0.40 040 10 r 53349x15% 11.4377x2.3%
90.00 0.18 040 10 a 54974%£28% 11.7787x36% 87.10 0.10 0.80 10 a b5.5751x1.8% 11.7737x2.2%
90.00 0.10 040 40 r 29586+11.2% 11.7921+£6.0% 90.00 0.40 0.40 40 r 64919+7.8% 11.8203+3.2%
43.30 0.10 0.40 40 a 3.6792x11.7% 11.1762x5.1% 90.00 0.40 048 40 a 42025+7.6% 119760+ 3.7%
18 90.00 0.10 040 10 r 5.0698+23% 11.9323+3.7% 30 90.00 040 0.80 10 r 4.4326x19% 115072+ 1.7%
90.00 0.22 040 10 a 4.8918+3.0% 11.0205+2.8% 90.00 0.10 0.80 10 a 4.6274:18% 11.4734+21%
90.00 0.10 040 40 r 3.3996x11.8% 11.2988+6.2% 90.00 0.40 0.40 40 r 36060x6.7% 11.7604 x£3.6%
40.00 0.40 040 40 a 3.2536x11.7% 11.1594£5.5% 90.00 0.40 0.61 40 a 4.2140x6.8% 11.5847%29%
19 90.00 0.10 040 10 r 5.5432+£23% 11.5032x3.5% 31 90.00 0.40 0.80 10 r 4.4863%x1.7% 11.6207£1.9%
52.70 0.10 0.80 10 a 5.4139+26% 11.1904x3.1% 90.00 0.39 0.80 10 a 3.8874x1.7% 11.0437x£1.6%
40.00 0.40 0.40 40 r 3.7274%91% 11.7534£5.0% 90.00 0.40 0.40 40 r 6.0253+5.0% 11.7301%2.9%
40.00 0.40 0.71 40 a 37471£95% 11.1536%5.1% 90.00 0.40 0.80 40 a 39223x6.3% 11.5477+£3.8%
20 90.00 0.10 0.80 10 r 5.4572+26% 11.3802x2.8% 32 40.00 040 0.80 10 r 49345%x15% 114024 +£2.1%
40.00 0.10 0.80 10 a 37713x27% 11.3283 £ 3.5% 90.00 0.40 0.80 10 a 43720%x1.7% 11.1356x1.7%
40.00 0.40 0.40 40 r 3.4385+10.6% 11.4221x5.4% 90.00 040 0.40 40 r 52331x6.7% 11.7088x2.6%
40.00 040 0.80 40 a 4.7986+99% 11.1000%4.2% 90.00 0.40 0.77 40 a 3.1318+6.1% 11.6212x3.7%
21 40.00 0.10 0.40 10 r 47280x24% 11.5602x24% 33 40.00 0.10 040 10 r 4.0706x£1.6% 11.3981+£2.1%
61.10 040 040 10 a 36517x£25% 11.8556x3.1% 90.00 0.40 0.80 10 a 39950x1.6% 11.7007+2.0%
40.00 0.40 0.40 40 r 62995+11.1% 12.0520+4.8% 90.00 0.40 0.40 40 r 4.2808+4.9% 11,7513 % 2.8%
40.00 0.40 0.80 40 a 4.2206+10.5% 11.0418+4.1% 90.00 0.40 0.50 40 a 5.8129+6.5% 11.7909%x2.6%
22 40.00 0.10 0.80 10 r 36116x2.0% 11.2964x25% 34 40.00 0.10 0.80 10 r 42748%16% 11.4274x=1.5%
90.00 0.40 040 10 a 4.4649x25% 11.7712x2.7% 81.20 0.21 0.80 10 a 4.2681+15% 11.5500x1.8%
40.00 0.40 0.40 40 r 5.3940+109% 11.9953+4.3% 90.00 0.40 040 40 r 4.3807+6.7% 11.6319%x2.9%
40.00 0.32 0.80 40 a 32357+84% 11.3292%+49% 90.00 0.40 0.40 40 a 4.9032x6.5% 117718+ 3.1%
23 40.00 0.10 0.80 10 r 3.7474x18% 11.2242+26% 35 90.00 0.10 0.80 10 r 49705x1.6% 11.6466%1.4%
59.00 0.40 0.40 10 a 45746x22% 121217+£26% 70.60 0.10 0.80 10 a 49053+1.1% 11.5449%£1.9%
40.00 040 040 40 r 5.8582+9.7% 12.1154x=4.6% 90.00 0.10 040 40 r 4.9629x6.6% 11.6131x2.8%
7140 0.40 0.79 40 a 51403+83% 11.3079+4.6% 90.00 0.40 040 40 a 4.0438%x55% 11.6527x3.0%
24 40.00 0.40 0.80 10 r 43556+21% 11.3748x27% 36 90.00 0.10 0.80 10 r 4.5832x15% 11.6816+14%
40.00 0.40 040 10 a 49662+22% 121342+2.7% 46.60 0.10 0.80 10 a 4.6496%x14% 11.5713+1.7%
40.00 0.40 0.40 40 r 6.1619+83% 12.0732%3.8% 90.00 0.10 0.40 40 r 4.9335%5.3% 11.6087+3.3%
90.00 0.40 0.80 40 a 3.1331%£83% 11.3227+4.2% 90.00 0.40 040 40 a 4.7496x£56% 11.6982<3.3%

As can easily be seen both & and E are now estimated
without bias. Similarly the new optimal settings are
distributed in a fairly uniform way in the feasible region.

Conclusions

Separation of preexponential (linear) parameters from
the nonlinear ones (activation energies, orders of reaction,
etc.) shows two remarkable advantages.

(a) The correlation between the independent (nonlinear)
parameters is far less than that between linear and
nonlinear parameters in nonseparated models. Since
correlation is generally a severe hindrance to precise
estimation and interpretation of the individual parameters,
its reduction makes it possible to reduce the number of
experiments, due to a better use of the information

available.

(b) The objective function for the determination of
optimum settings turns out to be more easily amenable to
global optimization than traditional nonseparated models.

These two properties can increase, to a considerable

extent, the overall efficiency of sequential experiment
planning.

Nomenclature

a = first parameter in the heteroscedasticity expression of

error

b = second parameter in the heteroscedasticity expression of

error

B = vector (Dg/DE,Dg/Da,Dg/Dg)

¢; = concentration of species { (mol/cm3)
D = Frechet operator of matrix derivative
E = activation energy (kcal/mol)

f = reaction rate as a function of operating variables and

parameters
Fi; = (9f/80,(X.,8))

£ = reaction rate (mol/cm?3s)
g = 0g/de;
G = parameter transformation matrix
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h;=seeeq 6

H = pseudoinverse of h;

k = preexponential factor

pi = partial pressure (atm)

r = reaction rate (mol/cm3s)

T = temperature (K)

Ui = asz.,;j'l

V = variance-covariance matrix
x; = mole fraction of component 1
X3 = mole fraction of component 2
X = vector of independent variables

Greek Symbols

a = order of reaction

8 = order of reaction

vi = 26i/k

£, = 0k/0E - k/RT

& = 0k/da+ kIn py

£ =0k/08+ kInp,

0 = parameters

a? = variance

¢ = reaction rate divided by the preexponential factor

Superscripts

* = reference temperature
+ = pseudoinverse
l=1-H*H
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