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New Procedure for Optimal Design of Sequential Experiments in 
Kinetic Models 

Vincenzo G. Dovi,' Andrea P. Reverberi, and Leonard0 Acevedo-Duartet 
ISTIC-UniversitB di Genova, Via Opera Pia, 15, 16145 Genova, Italy 

The high correlation between preexponential factors and activation energies is a severe drawback 
in the estimation of kinetic parameters. This difficulty is generally overcome using two different 
techniques, Le., reparametrization and parameter separation. It has been demonstrated that  in 
sequential experimental design the former technique can only occasionally lead to  better numerical 
results, with no theoretical advantage over the non-reparametrized model. In this work we show 
that  the separability property can be a convenient tool also for the optimization of experiment 
planning. A numerical example is considered, and both cases of constant absolute and relative 
errors are examined. 

Introduction 
Kinetic rate models can be written as 

r = f(X,B) (1) 
where r is the vector of measured rates, X is the vector of 
the operating variables, and 0 are the unknown parameters. 

Typically the kinetic rate models can be cast into the 
form 

where kjj indicate preexponential factors and Eij activation 
energies. f i j  are suitable functions of concentrations c, 
and the parameters CY are related to the orders of the 
reactions. 

Thus the kinetics of a single irreversible reaction is 
described by 

r = ke-E/RTc,ac$... (2) 

The high correlation between preexponential factors and 
activation energies makes it difficult to estimate kinetic 
parameters accurately. 

The influence of this correlation on convergence in the 
iterative estimation of the parameters 0 can be successfully 
reduced if the reparametrization suggested by Box (1965) 
is introduced, namely, 

(3) k' 11 , , = k. 41 ,e-Eii./RT 

(4) 

where !P is a reference temperature. 
Since k' and E turn out to be much less correlated than 

the original parameters k and E, the estimation procedure 
is considerably easier. 

Another strategy based on the method of separation of 
variables (Lawton and Sylvestre, 1971; Golub and Pereyra, 
1976) makes it possible to carry out the whole estimation 
procedure in terms of the parameters E, CY, and p (which 
in the sequel will be referred to as nonlinear parameters, 
due to the fact that they enter relation 2 nonlinearly), 
with k being evaluated, in the case of a single irreversible 
reaction, by the relation of conditional optimality given 
by the expression 
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k = H+(E,cY,p)r (5) 
where r is the vector {rj) and H+ is the pseudoinverse of 
the vector 

hi = e-E/RTc,~cz~... (6) 
the general definition of the pseudoinverse of an m X n 
matrix A of rank r being given by 

where R is a nonsingular r X r matrix and K and H are 
two orthogonal matrices given by the (not uniquely 
defined) orthogonal decomposition of A 

A = HRKT 
Another approach, based on normal equations and direct 

substitution, has been recently proposed by Chen and Aris 
(1992) for a simple case. 

A typical Gauss-Newton step of the regression procedure 
based on least squares is provided by 

(7) e(n+l) = g(n) - ( D H * ~ ) + H ~ ~  

where B is the vector {E,cY,@, p are the residuals (exper- 
imental values minus computed values of the reaction 
rates), H* is defined as (1 - H+H), and DE* is the Frechet 
derivative of the matrix HI (Golub, 19761, defined as 

A t  convergence, the standard deviations of {E,cY, /~)  can be 
estimated employing the usual approximation baaed on 
the Hessian matrix of the likelihood function, whereas 
the variance of k can be evaluated using the general relation 

The aim of optimal design of sequential experiments is to 
determine values of the independent variables T, c1, CZ, ... 
at which to take the new experiment(s), so that a suitable 
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and Brisk) has been dropped, so that the introduction of 
a third inert component could be avoided. 

The kinetic rates ri can be considered subject to normally 
distributed random errors with variance u2 given by 

u2 = arb 
which is the common way of representing heteroscedas- 
ticity of data (Reilly et al., 1977). Suppose the estimates 
k ,  E ,  a, and have been obtained after the first N 
experiments and let Ve be the variance-covariance matrix 
of the estimates of the nonlinear parameters E ,  a,  and p 
obtained using the minimization method, whose general 
iteration is given by relation 7. 

Let us suppose further that the criterion used for optimal 
design is given by the minimization of the-determinant of 
the expected variance-covariance matrix V obtained after 
the new experiment. 

In this case we have (Bard, 1974) 

norm of the expected variancecovariance matrix of the 
parameters after the new experiments is least. 

If random errors are normally distributed with constant 
variance u2, the variancecovariance matrix can be ap- 
proximated by 

v = (F~F)-V (9) 
where Fij (aflaOj)(Xi,Oj) (Bard, 1974). 

A frequently used norm is the volume of the confidence 
region, whose linear approximation with respect to 8 is 
given by (Agarwal and Brisk, 1985) 

(0 - 8)T(FTF)(0 - 8) = e 

where 8 is the current vector of parameters and e is a 
constant depending on the number of degrees of freedom, 
the selected probability level, and the error variance. 

In fact it can be shown that the volume of the confidence 
region is inversely proportional to the determinant of V 
(Box and Lucas, 1959). 

It has been demonstrated by Rimensberger and Rippin 
(1986) that the introduction of a reparametrization does 
not change the sequence of optimal settings for the 
independent variables, even if minor numerical improve- 
ments are produced, as reported by Agarwal and Brisk 
(1985). 

In fact the confidence region volume is proportional to 

IGI I(FTF)-')'/' 
where G is the transformation matrix 

ak', awl 

G = ah', ah', :j 
... ... ... 

Since the elements of G do not depend on the inde- 
pendent variables T, c1, and CZ, there is no difference in 
minimizing J(FTF)11/2 or )GI I(FTF)I-l/z with respect to the 
independent variables for the determination of optimal 
settings. 

On the other hand transformation (eqs 5 and 6) does 
depend on the independent variables Ti, Cli ,  and Czi. 

This means that differences are to be expected between 
the transformation approach and the separation of vari- 
ables approach in the general optimization strategy. In 
particular the latter approach will be shown to be more 
amenable to a numerical solution due to a simplified 
analytical form. 

Design Procedures Using Separable Models 
The example reported by Agarwal and Brisk (1985) is 

used to illustrate the method. It can be generalized to 
multivariate reversible models along the guidelines dis- 
cussed in DovI et al. (1987). 

The kinetic model is given by 

r = g = k4(E,a,/31T,xl,x,) = ke-E/RTpTpt 
with the limitations 

P1,min 5 PI 5 P1,ma. 

~ 2 , m i n  I PZ I P2,mar 

Tmin I T I Tma. 

The assumption of constant pressure (made by Agarwal 

where B is the vector (DglDE, DglDa, DglDp) computed 
at  the new setting. DglDE, DglDa, DglDp indicate total 
derivatives of g, i.e., they take into account changes in k ,  
according to relation 5,  as the parameters E ,  a ,  and pvary. 

We shall examine first the case ( b  = 2) which corresponds 
to constant relative errors. Relation 10 can be written as 

m 

where 

g = k 4  

Setting 

ak2Ve,ij-1 uij 
we obtain 

det[litj + uijl = max (11) 
Due to the one-to-one correspondence between €1 - T, €2 
-PI, and [3 - pz, the optimization can be carried out in 
terms of the I after suitable modifications of the con- 
straints. 

On the other hand simple algebraic manipulations 
change problem 11 into 

@ = E12(u,2u33 - u2:) + [2(u11u33 - ul:) + t:(u22ull - 
ul:) + 2f1E2(u13u23 - u12u33) + 2f1ES(u12u23 - u22u13) + 

2&&3(ulZu13 - ~ 1 1 ~ 2 3 )  = max (12) 
Stationary points of this expression can be determined 
solving a 3 X 3 system of linear equations. However, since 
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Table 1. Flow Chart of the Algorithm for Optimal 
Settings Computation 
1. Set k = 1 
2. Set a = 0 
3. Set [ k  = [f' 
4. Compute 

ukj 

Uhk 
[ j # k  = - [k 

5. If [ j m h  I [ j  5 [j,- 

Compute the objective function at @',[j 
and goto 12 

6. If k = 1 then set m = 2 else if k = 2thenset m = 3elseset m = 1 
7. Set b = 0 

9. If € j m h  I [ j  I [j,- 

€:"',€;'& 
Compute the objective function at 

and goto 11 
10. Compute the objective function at 

[:"',[;',[y' 
Compute the objective function at 

- [:"',[$',$' 
11. If b = 0 then set b = 1 and goto 8 
12. If a = 0 then set a = 1 and got03 
13. Set k = k + 1. If k > 3 then stop 
14. Goto 2 

there are no linear terms in €, the solution cannot be located 
on interior point of the feasible domain. Thus the solution 
of this maximization problem can be obtained by com- 
binatorially setting some of the ti to their upper (lower) 
limits and solving a simplified system of linear equations 
with respect to the remaining variables. 

The overall combinatorial scheme and the corresponding 
optimal values of t j  are illustrated in Table 1, where the 
notation ti(o) = ti,min 5;') = 

On the other hand the strong correlation reduction 
between nonlinear parameters after the separation pro- 
cedure can be taken advantage of. In fact if off diagonal 
elements of Ve can be neglected, V 0 - l  will also be nearly 
diagonal. Thus if 

has been used. 

Ui j  N U . . 6 . .  
11 11 

the maximization problem reduces to 

max 
where 

42 = UllU22 

This problem can be easily solved by separate optimization 
of 

p - + = m a x  dE R 

(i.e., T = Tm, or ?' = Tmi; according to the current 
magnitudes of k and aklaE and the sign of dkldE) and 

+ k hp{  = max 

Table 2. Initial Experimental Conditions 

expt no. T, "C PI PZ 
1 45.0 0.35 0.65 
2 53.0 0.30 0.70 
3 60.0 0.28 0.72 
4 68.0 0.38 0.45 
5 75.0 0.25 0.55 
6 85.0 0.15 0.60 

Table 3. Initial Estimates. 
40% noise 10% noise 

A & BC this work A & BC this work 
k (103) >20 7.11 > 20 6.94 
E ,  kcal/mol 12.450* 14.761 >15 14.221 

a True values: k = 4.62, E = 11.6. * Reported value is inferred 
from graph. Agarwal and Brisk (1985). 

Table 4. Estimates of Reaction Orders 
true value after 6 ex& after 15 ex& 

(Y 0.33 0.35 * 0.02 0.34 & 0.005 
B 1 0.996 0.04 0.999 0.018 

subject to 

In order to estimate the degree of accuracy of the 
approximation described, let us neglect the quadratic terms 
in the off-diagonal variables uij contained in relation 12 
(in fact if the correlation coefficients Uij/(UijUjj)'/' are large, 
the approximation could not be used anyway). We obtain 

* = 512u22u33 + 5?u1u33 + 532u22U11 - 2'!1E2U12U33 - 
2t153U13u22 - 26253U23Ull 

and consequently 

where the symbols 51(O), 52(O) ,  5 3(O), and * O  refer to the 
approximate solution and A* is the change of the objective 
function brought about by nonzero values of u12, u13, and 
~ 2 3 .  Thus for any predetermined value of the ratio A*/ 
'ko, it is possible to decide if the approximation described 
can be employed. 

Let us consider now the case of constant absolute error. 
We have to maximize 

d e t [ m  a + Vi'] = a I det V;'[a + BVJ3Tl 

which corresponds to the maximization of 

where 

2E 2a 2P Y ' = k  Y 2 = k  Y 3 = F  

subject to suitable bounds on the t.  Stationary points of 
this problem are given by 
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Table 5. Correlation Factors between Parameters (40% 
Noise) 

Reparametrized Model 

In k’ h W R )  a B 
1 0.9699 0.9874 0.9574 

1 0.9700 0.9251 
1 0.9035 

1 

SeDarated Model 

i 
Ye + = O  

i.e., 

Relations 15 and 16 make it possible to express 51 and 52 
as linear functions of 53. Substituting in 14 gives an 
equation in the single variable 53. Thus by scanning a 
suitable range of (3, we can locate all the stationary points 
of ([1,[2,[3). This makes it possible to locate stationary 
points inside the feasible domain. 

In this case too, maxima on the domain boundary can 
be determined by combinatorially setting some of the t i  
to their upper (lower) limits and repeating the procedure 
described above for the remaining variables. 

Values of the heteroscedasticity parameter b other than 
0 or 2 generally lead to objective functions more difficult 
to optimize due to the nonstraightforward determination 
of all unconstrained maxima. However, knowing optimum 
settings for the cases b = 0 and b = 2 can provide guidance 
concerning the optimum values for intermediate cases. 

Thus a general outline of the method has been com- 
pletely described. 

Benefits Resulting from the Use of Separable 
Models in the Design Procedure 

Any procedure for the design of sequential experiments 
consists of two steps: (1) Estimation of parameters by 
means of regression calculations using the experimental 
data available. (2) Determination of optimum variable 
settings for the next experiment(s). 

If parameters are highly correlated, the first step is 
generally difficult and can be dealt with only using special 
techniques, such as reparametrization and separation of 
variables, the latter technique possessing the additional 
advantage of reducing the number of independent pa- 
rameters. 

The second step is a difficult task, because it implies a 
nonconvex, nonlinear maximization. It is generally tackled 
by setting up a grid over the permitted experimental region, 
each point of the grid being used as a starting point for 
a local convex maximization. By reducing the dimensions 
of the grid meshes (i.e., increasing the number of grid 
points), we can be confident that the global maximum has 
been located. However, if the number of variables exceeds 
2, this procedure can be computationally prohibitive, even 
if the selected grid is comparatively coarse. Thus a 
frequent compromise is to limit the selection of new 
experimental settings to the points of the grid, a t  each of 
which the objective function is evaluated (Rimensberger 
and Rippin, 1986). 

As has been pointed out in the introduction, the use of 
reparametrization does not alleviate this difficulty, whereas 

1 0.0668 
1 

0.0437 
0.0201 
I 

the method of separation of parameters leads, as dem- 
onstrated in the previous paragraph, to a simple combi- 
natorial algorithm, capable of locating the global minimum 
with a modest number of evaluations of the objective 
function. 

Thus the benefit resulting from the use of separable 
models is two-fold (a) After each experiment the infor- 
mation available is used effectively for the estimation of 
parameters. This can prevent additional unnecessary 
experiments. (b) Globally optimum settings are deter- 
mined after each regression step, so that each new 
experiment provides the largest amount of information. 

Traditional techniques are less likely to determine the 
same sequence of parameters and settings, due to the 
numerical difficulties described above. This can lead to 
a greater number of experiments than necessary. 

A Numerical Example 

To test the validity of the procedure described we have 
simulated an experimental campaign, using the model and 
the initial six experimental data points proposed by 
Agarwal and Brisk (19851, and report the results in Table 
2. Although partial pressures instead of molar fractions 
were used, we were able to use the same numerical values 
with partial pressure being expressed in atmospheres and 
the preexponential factor possessing suitable dimensions. 

To reproduce the test we added random 10 % and 40% 
relative and absolute errors to the exact data in the initial 
set, as well as in the rate data obtained by simulating the 
reaction at  the optimum settings determined. The results 
obtained are reported for the four cases, but a comparison 
with those provided by Brisk and Agarwal is possible only 
for the two constant relative error cases. 

In both the low (10%) and high (40%) noise level cases 
the initial estimates of E, a, and /3 were different from 
those proposed by Agarwal and Brisk (1985), with a lower 
objective function than that obtained using their proposed 
values, which were the starting values used in our 
minimization procedure (see Table 3). In other words 
separation of parameters determines the global minimum, 
whereas the non-reparametrized model as well as the 
reparametrized model locates a local optimum, which 
seems to coincide with the results obtained by Rimens- 
berger and Rippin (1986). 

The values of a and /3 are estimated very precisely and 
accurately even using only the first 6 data points, as 
compared with a 38.9% deviation after 15 experiments if 
the reparametrized model is used (see Table 4). 

Similarly the initial correlation coefficients between the 
nonlinear parameters are considerably lower than those 
between parameters in reparametrized and non-reparam- 
etrized models (see Table 5). 
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Table 6. Numerical Results Using 6 Initial Data Points 
exp. noise, exp. noise, 
no. T pl p2 % error k E,  kcal/mol no. T pl p2 % error k E,  kcal/mol 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.80 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.40 0.40 40 
90.00 0.40 0.80 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.40 0.40 40 
90.00 0.40 0.40 40 
90.00 0.40 0.40 10 
90.00 0.40 0.40 10 
90.00 0.40 0.40 40 
90.00 0.40 0.40 40 
90.00 0.40 0.40 10 
90.00 0.40 0.40 10 
90.00 0.40 0.40 40 
90.00 0.40 0.40 40 
90.00 0.40 0.40 10 
90.00 0.40 0.40 10 
90.00 0.40 0.40 40 
90.00 0.40 0.40 40 

r 
a 
r 
a 
r 
a 
r 
a 

r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 

r 
a 
r 
a 

r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 

r 
a 
r 
a 
r 
a 
r 
a 

7.3793 f 4.8% 14.1493 f 6.7% 
6.3857 f 4.5% 13.1487 f 5.3% 
6.8146 f 17.8% 14.0882 f 8.1% 
8.1923 f 17.8% 14.0013 f 8.4% 
5.7554 f 4.6% 14.2070 f 5.0% 
6.0690 f 4.3% 14.0010 f 4.6% 
8.2645 f 16.2% 14.1571 f 8.1% 
8.6476 f 16.4% 13.7504 f 9.9% 
5.6703 f 4.0% 13.2016 f 5.1% 
6.4919 f 3.4% 14.2210 f 4.2% 
8.2350 f 15.3% 12.8951 f 8.3% 
8.5271 f 15.0% 13.5405 f 7.7% 
7.2244 f 3.6% 12.9801 f 4.2% 
7.0176 f 3.6% 13.0045 f 5.5% 
7.6111 f 16.3% 12.1175 f 7.8% 
7.7154 f 12.7% 11.2634 f 6.7% 
7.4525 f 3.2% 12.8944 f 4.9% 
7.0266 f 3.7% 12.8093 f 4.4% 
7.7789 f 15.3% 12.5193 f 8.1% 
8.0838 f 14.5% 12.0879 f 6.8% 
7.2246 f 3.4% 12.6077 f 4.3% 
6.1849 f 3.2% 12.9571 f 3.9% 
7.4473 f 11.2% 12.2593 f 7.1% 
8.1651 f 11.7% 12.7508 f 6.9% 
6.3364 f 3.0% 12.6801 f 3.2% 
6.8146 f 3.0% 12.8299 f 3.6% 
7.8334 f 11.1% 12.4236 f 7.3% 
8.5007 f 13.1% 13.0416 f 6.1% 
6.1205 f 3.2% 12.5949 f 3.2% 
6.5490 f 3.5% 12.7048 f 3.6% 
7.2939 f 11.4% 12.7201 f 6.2% 
8.2402 f 12.4% 13.0333 f 6.0% 
6.4804 f 3.1 % 12.2319 f 3.7 % 
6.1026 f 2.3% 12.3933 f 3.6% 
7.7050 f 11.1% 12.5215 f 5.7% 
7.6865 f 10.8% 13.2483 f 6.0% 
5.9528 f 2.2% 12.1901 f 3.3% 
6.7050 f 3.2% 12.6590 f 3.3% 
8.1591 f 11.9% 12.9257 f 5.7% 
8.5018 f 10.6% 13.6281 f 5.5% 
5.8084 f 2.3% 12.1677 f 2.8% 
74296 f 2.7% 12.6568 i 3.8% 
7.4676 f 10.0% 12.9263 f 5.5% 
8.4217 f 12.1% 13.4823 f 4.8% 
6.1095 f 2.5% 12.3282 f 2.8% 
6.9795 f 2.4% 12.4901 f 3.1% 
7.7974 f 11.7% 12.9902 f 4.6% 
8.1113 f 9.6% 13.5519 f 5.0% 

As for the two parameters k and E ,  it was not possible 
to carry out a complete comparison, because the very 
starting values were different. 

After the initial estimate the sequence of optimal 
alternate experimental settings determination and re- 
gression calculations was carried out using the methods 
described in this paper (i.e., the algorithms defined in Table 
1 or by eqs 14-16 for settings determination and the 
algorithm defined by eq 7 for the estimation of parameters 
after each new experiment). 

The results obtained from this procedure (optimum 
settings, parameter estimates, and standard deviations of 
parameters after each additional experiment) are shown 
in Table 6. They can be summarized as follows: (a) There 
is hardly any influence of noise level and type of error on 
optimum settings, and their influence on the estimates 
obtained after each new experiment is not very strong 
either, if compared with the results reported by Agarwal 
and Brisk (19851, which seems to indicate a damping 

19 

20 

21 

22 

23 

24 

25 

26 

n 

27 

28 

29 

30 

90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.80 40 
90.00 0.40 0.40 10 
90.00 0.40 0.40 10 
90.00 0.40 0.40 40 
90.00 0.10 0.80 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.80 40 
90.00 0.10 0.80 10 
90.00 0.10 0.80 10 
90.00 0.10 0.40 40 
90.00 0.10 0.80 40 
90.00 0.10 0.80 10 
90.00 0.10 0.80 10 
90.00 0.10 0.80 40 
90.00 0.10 0.80 40 
90.00 0.10 0.80 10 
90.00 0.10 0.80 10 
90.00 0.10 0.80 40 
90.00 0.10 0.80 40 

r 
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r 
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r 
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r 
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a 

6.4736 f 2.4% 12.6402 f 2.7% 
6.7835 f 2.4% 12.7713 f 2.6% 
6.8730 f 8.6% 12.8705 f 5.1% 
7.4806 f 9.5% 13.9817 f 4.6% 
6.6672 f 2.2% 12.1975 f 2.8% 
7.0439 f 2.3% 12.5932 f 2.8% 
7.5762 f 7.0% 12.7698 k 4.7% 
7.3631 f 8.2% 13.4715 f 4.3% 
5.8763 f 2.4% 12.1189 f 2.5% 
6.1464 f 2.6% 12.6519 f 2.2% 
7.2753 f 9.2% 12.7148 f 4.5% 
7.6239 f 9.2% 13.4131 f 4.6% 
6.3845 f 1.9% 12.2481 f 2.7% 
6.4271 f 2.3% 12.7917 f 2.8% 
7.3390 f 8.6% 12.7220 f 4.4% 
7.5471 f 7.3% 13.5179 f 4.1% 
6.2354 f 1.8% 12.7539 f 2.4% 
6.3994 f 1.9% 12.8111 f 2.4% 
7.4435 f 8.9% 12.9742 f 4.1% 
8.5527 f 9.1% 13.3577 f 4.4% 
6.3744 f 2.0% 12.5300 f 2.5% 
6.6717 f 2.1% 12.9010 f 2.6% 
7.2331 f 6.9% 12.9924 f 4.2% 
8.4758 f 6.8% 13.5141 f 4.4% 
6.3000 f 1.6% 12.2951 f 2.3% 
6.1959 f 2.1% 12.7614 f 2.0% 
7.4810 f 7.6% 12.8628 f 3.5% 
7.5665 f 6.9% 13.7333 f 4.3% 
6.1648 f 1.9% 12.5931 f 2.4% 
6.8021 f 1.8% 12.5190 f 2.4% 
8.1525 f 7.3% 12.8610 f 3.7% 
8.2598 f 7.7% 13.6185 f 3.5% 
5.7563 f 2.1% 12.1926 f 2.3% 
6.8933 f 2.0% 12.6593 f 2.5% 
8.1166 f 6.2% 12.6733 f 4.0% 
7.3416 f 7.4% 13.3722 f 3.1% 
6.2148 f 1.9% 12.1875 f 2.3% 
6.2146 f 1.8% 12.6587 f 2.5% 
7.4385 f 6.0% 12.9959 f 3.2% 
7.9737 f 6.3% 13.5081 f 3.2% 
7.0531 f 1.7% 12.2964 f 2.0% 
6.6296 f 1.6% 12.7655 f 2.3% 
7.5459 i 7.4% 12.9093 f 3.3% 
8.5293 f 5.7% 13.3011 f 3.4% 
7.1231 f 1.6% 12.5632 f 2.1% 
6.7217 f 1.8% 12.6147 f 2.0% 
7.6924 f 7.0% 12.8876 f 3.3% 
7.3804 f 6.8% 13.3631 f 3.6% 

influence of the separation of parameters on the accuracy 
of the estimates. (b) In no case did the optimal estimates 
of k and E tend to the true values. (c) The same (upper) 
value of temperature was called for a t  each stage, with 12 
experiments out of 24 being exactly the same. 

This anomalous behavior was attributed to an insuf- 
ficient number of initial data points (six data points for 
four parameters). In fact relation 10, computed at  the 
current values of the parameters, is valid only if the latter 
are sufficiently close to the true values. Otherwise strongly 
biased estimates may call for the same experiment many 
times sequentially. On the other hand the same exper- 
imental settings may fail to provide enough information 
for bias correction and eventually this can lead to wrong 
asymptotic estimates. To test this possibility, we increased 
the number of initial data points to 12 and repeated the 
same procedure increasing the number of sequential 
experiments correspondingly. The results are reported 
in Table 7. 
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Table 7. Numerical Results Using 12 Initial Data Points 

exp. noise, exp. noise, 
no. T pl p2 % error k E,kcal/mol no. T pl p2 % error k E, kcal/mol 
13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.10 0.40 10 
90.00 0.10 0.40 40 
90.00 0.10 0.40 40 
90.00 0.10 0.40 10 
81.70 0.10 0.40 10 
90.00 0.10 0.40 40 
58.30 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.18 0.40 10 
90.00 0.10 0.40 40 
43.30 0.10 0.40 40 
90.00 0.10 0.40 10 
90.00 0.22 0.40 10 
90.00 0.10 0.40 40 
40.00 0.40 0.40 40 
90.00 0.10 0.40 10 
52.70 0.10 0.80 10 
40.00 0.40 0.40 40 
40.00 0.40 0.71 40 
90.00 0.10 0.80 10 
40.00 0.10 0.80 10 
40.00 0.40 0.40 40 
40.00 0.40 0.80 40 
40.00 0.10 0.40 10 
61.10 0.40 0.40 10 
40.00 0.40 0.40 40 
40.00 0.40 0.80 40 
40.00 0.10 0.80 10 
90.00 0.40 0.40 10 
40.00 0.40 0.40 40 
40.00 0.32 0.80 40 
40.00 0.10 0.80 10 
59.00 0.40 0.40 10 
40.00 0.40 0.40 40 
71.40 0.40 0.79 40 
40.00 0.40 0.80 10 
40.00 0.40 0.40 10 
40.00 0.40 0.40 40 
90.00 0.40 0.80 40 

r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 
r 
a 

6.6414 f 3.8% 12.0097 f 4.5% 
7.2010 f 3.6% 11.4204 f 4.4% 
6.3393 f 13.9% 11.2631 f 7.6% 
7.2857 f 16.3% 12.0488 f 5.9% 
5.6694 f 3.2% 11.1977 f 4.0% 
5.7731 f 3.6% 11.0302 f 4.6% 
5.3425 f 14.5% 11.2962 f 8.4% 
6.1111 f 14.5% 12.3135 f 7.4% 
5.2727 f 3.4% 11.1552 f 4.1% 
4.1367 f 3.1% 11.6192 f 3.5% 
2.9161 f 10.9% 11.6445 f 7.2% 
3.6844 f 13.6% 12.0207 f 6.7% 
3.7429 f 2.7% 11.9322 f 3.6% 
5.2651 f 3.3% 11.8252 f 3.3% 
5.0146 f 13.6% 11.7713 f 5.9% 
5.5862 f 12.8% 11.7617 f 6.7% 
3.8124 f 3.2% 12.0462 f 3.7% 
5.4974 f 2.8% 11.7787 f 3.6% 
2.9586 f 11.2% 11.7921 f 6.0% 
3.6792 f 11.7% 11.1752 f 5.1% 
5.0698 f 2.3% 11.9323 f 3.7% 
4.8918 f 3.0% 11.0205 f 2.8% 
3.3996 f 11.8% 11.2988 f 6.2% 
3.2536 f 11.7% 11.1594 f 5.5% 
5.5432 f 2.3% 11.5032 f 3.5% 
5.4139 f 2.6% 11.1904 f 3.1% 
3.7274 f 9.1% 11.7534 f 5.0% 
3.7471 f 9.5% 11.1536 f 5.1% 
5.4572 f 2.6% 11.3802 f 2.8% 
3.773 f 2.7% 11.3283 f 3.5% 
3.4385 f 10.6% 11.4221 f 5.4% 
4.7986 f 9.9% 11.1OOO f 4.2% 
4.7280 f 2.4% 11.5602 f 2.4% 
3.6517 f 2.5% 11.8555 f 3.1% 
6.2995 f 11.1% 12.0520 f 4.8% 
4.2206 f 10.5% 11.0418 f 4.1% 
3.6116 f 2.0% 11.2964 f 2.5% 
4.4649 f 2.5% 11.7712 f 2.7% 
5.3940 f 10.9% 11.9953 f 4.3% 
3.2357 f 8.4% 11.3292 f 4.9% 
3.7474 f 1.8% 11.2242 f 2.6% 
4.5746 f 2.2% 12.1217 f 2.6% 
5.8582 f 9.7% 12.1154 f 4.6% 
5.1403 f 8.3% 11.3079 f 4.6% 
4.3556 f 2.1 % 11.3748 f 2.7 % 
4.9662 f 2.2% 12.1342 f 2.7% 
6.1619 f 8.3% 12.0732 f 3.8% 
3.1331 f 8.3% 11.3227 f 4.2% 

As can easily be seen both k and E are now estimated 
without bias. Similarly the new optimal settings are 
distributed in a fairly uniform way in the feasible region. 

Conclusions 
Separation of preexponential (linear) parameters from 

the nonlinear ones (activation energies, orders of reaction, 
etc.) shows two remarkable advantages. 

(a) The correlation between the independent (nonlinear) 
parameters is far less than that between linear and 
nonlinear parameters in nonseparated models. Since 
correlation is generally a severe hindrance to precise 
estimation and interpretation of the individual parameters, 
its reduction makes it possible to reduce the number of 
experiments, due to a better use of the information 
available. 

(b) The objective function for the determination of 
optimum settings turns out to be more easily amenable to 
global optimization than traditional nonseparated models. 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

90.00 0.40 0.40 10 
44.70 0.39 0.40 10 
40.00 0.40 0.40 40 
90.00 0.40 0.80 40 
90.00 0.10 0.80 10 
40.00 0.33 0.40 10 
40.00 0.10 0.40 40 
90.00 0.40 0.63 40 
90.00 0.10 0.80 10 
40.00 0.40 0.40 10 
40.00 0.10 0.40 40 
90.00 0.40 0.40 40 
90.00 0.10 0.80 10 
50.40 0.31 0.40 10 
40.00 0.10 0.40 40 
90.00 0.40 0.40 40 
90.00 0.40 0.40 10 
87.10 0.10 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.48 40 
90.00 0.40 0.80 10 
90.00 0.10 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.61 40 
90.00 0.40 0.80 10 
90.00 0.39 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.80 40 
40.00 0.40 0.80 10 
90.00 0.40 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.77 40 
40.00 0.10 0.40 10 
90.00 0.40 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.50 40 
40.00 0.10 0.80 10 
81.20 0.21 0.80 10 
90.00 0.40 0.40 40 
90.00 0.40 0.40 40 
90.00 0.10 0.80 10 
70.60 0.10 0.80 10 
90.00 0.10 0.40 40 
90.00 0.40 0.40 40 
90.00 0.10 0.80 10 
46.60 0.10 0.80 10 
90.00 0.10 0.40 40 
90.00 0.40 0.40 40 
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r 
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r 
a 
r 
a 
r 
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5.3594 f 1.9% 11.5568 f 2.5% 
4.5016 f 2.2% 11.7075 & 2.9% 
2.8932 f 8.5% 11.6938 f 3.8% 
5.3449 f 7.9% 12.0859 f 3.8% 
4.2376 f 1.7% 11.6536 f 2.2% 
5.1395 f 1.9% 11.4719 f 2.4% 
5.5224 f 8.0% 11.8052 f 3.5% 
3.2003 f 7.0% 12.2091 f 4.4% 
4.8092 f 2.0% 11.4582 f 1.9% 
5.3686 f 2.0% 12.0431 f 2.5% 
5.9159 f 7.9% 11.7441 f 4.4% 
4.9733 f 7.8% 12.2214 f 3.6% 
4.8503 f 2.0% 11.5123 f 1.9% 
3.9994 f 1.7% 12.0790 f 2.1% 
3.6423 f 6.2% 11.8198 f 4.1% 
5.1986 f 7.3% 11.9262 f 3.7% 
5.3349 f 1.5% 11.4377 f 2.3% 
5.5751 f 1.8% 11.7737 f 2.2% 
6.4919 f 7.8% 11.8203 f 3.2% 
4.2025 f 7.6% 11.9760 f 3.7% 
4.4326 f 1.9% 11.5072 f 1.7% 
4.6274 f 1.8% 11.4734 f 2.1% 
3.6060 f 6.7% 11.7604 f 3.6% 
4.2140 f 6.8% 11.5847 f 2.9% 
4.4863 f 1.7% 11.6207 f 1.9% 
3.8874 f 1.7% 11.0437 f 1.6% 
6.0253 f 5.0% 11.7301 f 2.9% 
3.9223 f 6.3% 11.5477 f 3.8% 
4.9345 f 1.5% 11.4024 f 2.1% 
4.3729 f 1.7% 11.1355 f 1.7% 
5.2331 f 6.7% 11.7088 f 2.6% 
3.1318 & 6.1% 11.6212 f 3.7% 
4.0706 f 1.6% 11.3981 f 2.1% 
3.9950 f 1.6% 11.7007 f 2.0% 
4.2808 f 4.9% 11.7513 f 2.8% 
5.8129 f 6.5% 11.7909 f 2.6% 
4.2748 f 1.6% 11.4274 f 1.5% 
4.2681 f 1.5% 11.5500 f 1.8% 
4.3807 f 6.7% 11.6319 f 2.9% 
4.9032 f 6.5% 11.7718 f 3.1% 
4.9705 f 1.6% 11.6466 f 1.4% 
4.9053 f 1.1% 11.5449 f 1.9% 
4.9629 f 6.6% 11.6131 f 2.8% 
4.0438 f 5.5% 11.6527 f 3.0% 
4.5832 f 1.5% 11.6816 f 1.4% 
4.6496 f 1.4% 11.5713 f 1.7% 
4.9335 f 5.3% 11.6087 f 3.3% 
4.7496 f 5.6% 11.6982 f 3.3% 

These two properties can increase, to a considerable 
extent, the overall efficiency of sequential experiment 
planning. 

Nomenclature 
a = first parameter in the heteroscedasticity expression of 

b = second parameter in the heteroscedasticity expression of 

B = vector (Dg/DE,Dg/Da,Dg/DB) 
ci = concentration of species i (mol/cms) 
D = Frechet operator of matrix derivative 
E = activation energy (kcal/mol) 
f = reaction rate as a function of operating variables and 

Fij = (af/a@j)(Xi,Oj) 
g = reaction rate (mol/cm3.s) 

G = parameter transformation matrix 

error 

error 

parameters 

gi = ag/aei 
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hi = see eq 6 
H = pseudoinverse of hj 
k = preexponential factor 
pi  = partial pressure (atm) 
r = reaction rate (mol/cm3-s) 
T = temperature (K) 
uij = ak:V,ij-l 
V = vanance-covariance matrix 
x1 = mole fraction of component 1 
x2 = mole fraction of component 2 
X = vector of independent variables 
Greek Symbols 
a = order of reaction 
j9 = order of reaction 

€1 = ak/aE - k/RT 
t2 = ak/aa + k ~n p 1  
t3 = ak/aS + k In p z  
8 = parameters 
u2 = variance 
4 = reaction rate divided by the preexponential factor 
Superscripts 
* = reference temperature + = pseudoinverse 

yj = 28i/k 

I = 1 - H+H 
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